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CHAPTER 1

HIGH RESOLUTION TWO DIMENSIONAL SHEAR BAND

COMPUTATIONS: IMPERFECTIONS AND MESH DEPENDENCE

1.1. INTRODUCTION

The calculation of shear bands and other material instability phenomena has become

of considerable interest because of its importance in predicting material failure. This paper

deals with two issues for this class of problems:

1. the role of imperfections in setting the length scale and structure of shear bands

in two dimensional problems;

2. the behavior of various elements types for shear bands which are not aligned

with element edges.

The primary tool used in examining these issues is a massively parallel version of an

explicit program, Belytschko, Plaskacz, Kennedy, Greenwell (1990), and Belytschko,

Plaskacz, Chiang (1991). By means of this program, we were able to solve problems

using up to 64,000 elements.

For coarse meshes, numerical results are strongly mesh dependent for the shear

band problem. Tvergaard et al. (1981) and Needleman and Tvergaard (1984) have used

crossed-diagonal meshes of constant strain triangles and J2 flow theory with strain-

softening to calculate shear bands. The crossed-diagonal meshes developed by Nagtegaal,

Parks and Rice (1974) were used to avoid volumetric locking. For these elements and the

refinement which was used, it was necessary for the mesh to be arranged so that the

diagonals of the mesh coincided with the orientation of the shear band. Otherwise,

localization would not occur. This behavior of numerical solutions is often called mesh

dependence.

Several approaches have been used to decrease mesh dependence for shear bands.

Ortiz, Leroy and Needleman (1987) used the loss of ellipticity in an element to trigger the

introduction of special step-function strain fields associated with incompatible modes of the

quadrilateralfelement. Fish and Belytschko (1988) used embedded band-like functions

triggered by loss of ellipticity to obtain good resolution with coarse meshes. Pietruszczak

and Mroz (1981) first proposed a similar approach for triangular elements. However, these



approaches can only give improvement in the overall response of a body, such as the force-

deflection curve. The detailed structure of the strain-field within the shear band, including
the maximum strain, cannot be computed from these approaches.

Belytschko, Fish and Bayliss (1990) used a spectral overlay on finite elements,

which was able to provide a detailed resolution in the shear band. They showed the critical

role of the initial imperfection on the morphology of the strain field in the shear band.

However, the method entailed a priori knowledge of the location of the shear band.

Recently, an r-adaptive mesh refinement scheme has been applied to localization problems

by Ortiz and Quigley (1991) and it proved quite effective, but detailed results on shear band

structure were not given.

The critical issue of length scales in solutions of viscoplastic problems has

perplexed numerous researchers. Quasi-static viscoplasticity, in the absence of' heat

conduction, lacks a length scale, and in dynamic problems the length scale is markedly
smaller than the dimensions of shear bands. Several investigators, such as Pan (1983) and

Shawki and Clifton (1989), have mentioned imperfections, but their critical role in
determining the morphology of a shear band has not been studied extensively. Needleman
(1988) demonstrated the role of imperfection size for stepwise imperfections in one-

dimension. Belytschko, Bayliss and Fish (1990), by using a spectral overlay on finite

elements which provided higher resolution at the shear bands, were able to show that the
length and shape of an imperfection plays a critical role in determining the length scale of a

shear band, as exhibited by its width. Subsequently, Belytschko, Moran and Kulkarni

(1991) developed a closed-form solution for a class of one-dimensional viscoplastic

problems which clearly demonstrated the dominant role of the imperfection in determining

the shear band structure after the onset of material instability. They showed that the initial
width of the shear band is completely determined by the initial width of the imperfection.

Furthermore, they showed that step function imperfections, which are widely used in two-

dimensional finite element calculations, are of questionable value insofar as the morphology

of the shear band is concerned because these lead to unstable solutions. Batra and
Liu(1990) have also studied the role of imperfections on adiabatic shear bands in two

dimensions.

In this paper, dynamic formation and progression of two-dimensional shear bands
isstudied using much finer meshes than have previously been reported. Various sizes of

imperfections are considered and both crossed-diagonal triangular element meshes and
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quadrilateral meshes are used. It will be shown that the onset of localization and the

structure of the shear band in the early stages of localization is independent of element type

if the mesh is sufficiently refined compared to the scale of the imperfection. However, in a

viscoplastic shear band the strain is characterized by an exponential growth which depends

on the magnitude of the initial imperfection, so that the region of highest strain gradient

narrows with time, and eventually only a few elements span this region. At this point, the

solution becomes element and mesh-dependent.

It is also shown that in two dimensions, as in one dimension, the structure, location

and size of the imperfection play a crucial role in the formation of the shear bands. For

larger imperfections, the initial shear band is markedly wider, and in these large-scale

computations often spans 6 to 10 elements. An interesting transition in the arrangement of

shear bands was also noted in the computations: when the size of the imperfection is

reduced in one example, a transition to a set of parallel shear bands was noted. Such

transitions have also been observed in experiments.

The paper is organized as follows: Section 1.2 gives a brief outline of the

computational method, Section 1.3 describes the computations and the results, and Section

4 gives some remarks and conclusions.

1.2. NUMERICAL METHOD

The problems were solved by a finite element method with a Lagrangian mesh. The

rate-of-deformation tensor

2 2 xj ax, or il = D v (1)

is used as a measure of rate-of-deformation; here vi are the velocities, xi the Eulerian

(spatial) coordinates.

The constitutive equation was expressed in terms of the Jaumann rate of Cauchy

stress

V
c =cl = CD v (2a)

C + wO + CwT (2b)
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V
where a is the Jaumann rate, C is a constitutive tangent matrix which depends on the

current state of stress, and w is the spin tensor.

The governing equations are Eqs. (1) and (2) and the momentum equation

Yij~j + bi = p,ýj or D To + b = p, (3)

In two dimensions, Eqs. (1-3) represent 5 equations in the 5 unknowns sij and vi.

The finite element equations are obtained by approximating the velocities in each

element by

v(X,t) = N(X)de(t) (4)

The resulting ordinary differential equations are:

momentum equation

Ma(t) = f(t) a =- DýA dt ) (5)

f(t) = fext(t) - ftmt(t) (6)
fext- = LiTfxt(t) fit - LTfnt(t)

e e (7)

f'in (t) = BTad (8)

measure of rate-of-deformation

il(X,t) = B(X)le(t) B = N (9)

de(t) = Led(t) (10)

and the constitutive equation (2). In the above

t = time;

M = mass matrix;
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d = nodal displacement matrix;

X = material coordinate;

f(t), text(t), fint(t) = resultant, external and internal nodal forces, respectively;

B(X) = semidiscrete form of the symmetric part of the gradient operator;

1l = rate-of-deformation (velocity strain) tensor;

Le = Boolean connectivity matrix of element e.

The SIMD algorithm is described in Belytschko, Plaskacz, Kennedy and Greenwell

(1990). The algorithm uses an exchange of forces at each time step and integrates the

nodes redundantly so that only one communication is required in each time step, in contrast

to the two communications required in a standard gather-scatter finite element algorithm.

The exchange algorithm can also be used to advantage in MIMD computers. The essential

idea here is to use the gather-scatter operations within each subdomain, so that gather-

scatter does not require communication between processors. The exchange operation is

then used to communicate nodal forces for the interface nodes to the adjacent subdomains.

Note that the interfaces nodes are integrated redundantly by all processors which contain

elements connected to those nodes. However, this extra cost is compensated by the

reduction in communication costs brought about by the fact that communication is required

only once per time step. The algorithm for a MIMI implementation is shown in Table 1.

Table 1. MJMD implementation of exchange algorithm

loop over subdomains I (processors)

loop over elements e in subdomain I

gather nodal velocity Ve

compute rate-of-deformation by Eq.(9)

compute stress by constitutive equation

compute nodal forces fe

assemble nodal forces
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end loop on e

end loop on I

exchange forces on interface nodes between subdomains

compute accelerations by Eq. (5)

integrate to obtain new velocities and displacements

Incidentally, this algorithm was not very effective on the CM5, probably because of
inefficiencies in user-directed message passing. However, on the DELTA this algorithm

proved quite efficient.

The equations were integrated in time by the explicit central-difference method.
Two types of elements were used in these computations:

1. Quadrilaterals with one-point quadrature and consistent hourglass control
(Flanagan and Belytschko(198 1)), with a perturbation stabilization parameter e = 0.01.

2. Constant strain triangles arranged in the crossed-diagonal pattern which avoids
volumetric locking, Nagtegaal, Parks and Rice(1974).

A viscoplastic stress-strain law in which

V
a-= Celas(. _ vp) (11)

was used; Celas is the elastic constitutive matrix and 71vP the viscoplastic strain rate.

The von Mises yield surface has been used to determine the flow direction and the

rate of viscoplastic strain can be defined as follows

VP afn i - (12a)

f(a,k) = - k =0 (12b)

where effective stress a and effective viscoplastic strain e are given by
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;2 =3s:s (13)

where - is the deviatoric stress and

e.- _ZiivP:ilvPdt (14)

and the power law used here to determine the rate of effective viscoplastic strain is

11l9g( )J (15)

where a and m are material properties and g(Z) is the hardening function.

The rate tangent modulus scheme, see Peirce, Shilh and Needleman (1984), is used

for the constitutive update for each time step, so the viscoplastic strain is updated as

follows:

Ai = At[(1 - 0)E + 8Et,+d (16)

where the parameter 0 can vary from 0 to 1; the 0 = 0 and 0 = 1 are the forward and

backward Euler method, respectively. We choose 0 = 0.5 here, which corresponds to a

semi-implicit central difference update. To maintain accuracy in the later stages of

localization, the time step should be decreased, because the exponential growth of the

strains in the band can lead to significant truncation errors.

1.3. NUMERICAL SOLUTIONS

Calculations were performed for a square slab in plane strain as shown in Fig. 1. A

velocity was prescribed at the ends as shown: after a ramp, the constant value vo is 30.0

m/sec. The problem specification is shown in Fig. 1; it is similar to Needleman (1989).

Most of the calculations were made on a CM200.

In all cases, an initial imperfection was included in the form of a reduction in the

yield strength. One of the imperfections is

ay(x,y) = dy[ I - oxexp(- (x- xo) - (y - yo)2 }/r] (17)
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where xo, Yo specify the location of the maximum imperfection and ro its radius. In the

problems reported here, xo = Yo = 0 except where noted and a = 0.20. The same

viscoplastic material law as reported by Needleman (1989) was used: Young's modulus E

= 211 GPa, Cy = 460 MPa, Poisson's ratio n = 0.3, the viscoplastic exponent m = 0.01.

In the first example, two planes of symmetry were used and only the upper right-
hand quadrant was modeled. Unless noted, a value ro of 0.1 mm was used; this will be

called the large imperfection. A deformed 26 x 20 quadrilateral element mesh is shown in
Fig. 3a and exhibits no localization; Needleman obtained shear banding by using a similar

refinement in a crossed-triangular mesh and aligning the diagonal of quadrilateral elements
with the expected direction of shear band. The results we have obtained for the crossed-

triangular mesh, shown in Fig. 3b, also show localization. Note that most of the

deformation occurs in a single band, so the width of the shear band is only slightly larger

than the element size. This is a consequence of the fact that the effective size of the
imperfection is of the order of the element size. In these results, the strain field is a step

function in space since the elements are constant strain elements and one or two elements

span the entire shear band.

The same problem was then solved with a 128x128 mesh, i.e. 16K equally sized

elements. Twofold symmetry was again used in this problem, so only the upper right-hand
quadrant is modeled. The evolution of the mesh for the upper right-hand quadrant is

shown in Figs. 4 through 6. The figures show the development of a shear band

approximately 10 elements in width. Figs. 7 and 8 show contour plots of the effective

viscoplastic strain, from which it can be seen that the deviation from uniform strain first

occurs over a band of 8 to 10 elements. The structure of the strain field varies somewhat

along the length of the band initially, but becomes quite uniform in the later stages, except

at the two points where the shear bands intersect (at the center of the plate and at the top

surface). With time, the region of largest strain narrows. Figure 9 shows the deformed
mesh for the same problem with a 80x80 mesh. As can be seen by comparison with Fig.

4, the deformed meshes almost appear identical.

Figure 10 shows the profiles of the effective viscoplastic strain, given by Eq. 1.14,

across the shear band; this quantity gives a goood measure of the severity of deformation.

Results are also shown for when: (1) each quadrilateral element is replaced by 4 constant

strain triangular elements in a cross-diagonal pattern, so the total number of elements is

64K; (2) quadrilaterals using selective-reduced integration are used. The plots were made
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using the effective viscoplastic strains in the elements which lie along the line Y = 1.0 +
aX, where a is chosen so the line is perpendicular to the direction of shear band. It can be

seen that the effective plastic strain profiles for the different elements are almost identical

for t = 2.O0tsec and for t = 3.O01sec. At later times, a significant difference develops, and

the maximum effective strain differs markedly for the three different elements. However, it

should be noted that the growth of the strain is exponential just as in the one dimensional

problem; see Belytschko, Moran and Kulkarni(1991) for a one-dimensional solution. As a

consequence, the strain-rate increases with the strain and grows most rapidly at the point

where it is maximum. Therefore, the band appears to narrow in time and the highest
gradients occur at the center, where the strain profile becomes cusp-shaped. At 4.0psec,

the cusp-shaped region has narrowed to 1 or 3 elements. The resolution in the cusp-shaped

region is then insufficient, and the peak strain becomes very dependent on the type of

element. Thus, inevitably, after a sufficiently long time, these meshes becomes inadequate

for the viscoplastic strain-softening problem.

The problem was repeated with an 80x80 mesh using the same stabilization

parameters (s = 0.01) and a larger stabilization parameter (e = 0.05). The strain profiles are

shown in Fig. 11. Comparison of the results with e = 0.01 to those for the 128x128 mesh

(top of Fig. 10) shows that the strain profiles for for t = 2.01tsec and for t = 3.0psec agree

closely. Similarly, for the two values of the stabilization parameter the first two results are

almost identical. However, the result at t = 4.O.tsec differs markedly. This marked

difference is also attributed to insufficient resolution when the cusp-shaped region only

spans a few elements.

The load deflection curves for meshes of different size using the one-point

quadrature element with stabilization are compared in Fig. 12. It can be seen that the

results are almost identical for the three meshes until the latest stage of the deformation; the

horizontal axis after t = 1.0isec corresponds to time because the velocity is constant. The

load deflection curves for the one-point quadrature element with stabilization(URI), the

constant strain triangles in the cross-diagonal pattern and the SRI element are compared in

Fig. 13. These results are also almost identical except for the later stages; it is interesting to

note that the results for the triangular element and the URI element are almost identical

throughout the simulation.

The problem was repeated with a 128x128 quadrilateral mesh with the imperfection

of Eq. 1.17 with (x = 0.20, ro = 0.0039mm, i.e. a smaller imperfection. The deformed

9



mesh is shown in Fig. 14, the effective viscoplastic strain profile in Fig. 15. The change in

the response (as compared to Figs. 7 and 8) is quite dramatic: the reduction of the size of

the imperfection reduces the width of the shear band and introduces 4 additional

intersecting shear bands in the quadrant. Apparently, with the smaller imperfection, the

deformation due to the shear band through the imperfection is not sufficient to

accommodate the prescribed displacement of the top surface and additional shear bands are

triggered. This phenomenon has also been observed experimentally, Anand, Kim and

Shawki(1987).

A much smaller imperfection, ro = 0.00195mm, was also used for the same

problem. Again, an interesting result was found. Although the shear band pattern is the

same as in the previous results, the larger viscoplastic strains now occur in the shear bands
which do not pass through the imperfection; see the contour plots of the effective

viscoplastic strain, Fig. 16. This result again shows the crucial role of imperfections in the

structure of the shear bands.

To further assess the effects of the size of the imperfection, the results were

repeated with the imperfections:

- 2 2 2ay(x,y) = d'y(0.9 + 0.01[(x - Xo) (y - yo) ]/r2} r<ro (18)

= y r-ro

with ro=0.078mm and ro=0.156mm; these correspond to 10 and 20 elements, respectively.

The effective viscoplastic strain profiles at 4.Opsec are given in Fig. 17. It can be seen that

the width of the shear band is approximately twice as great for ro= 0.156mm. It is

interesting to note that the peak strain is equal for these two cases at t = 4.0tsec; it is

evidently set by the maximum magnitude of the imperfection, which in this case is

identical. The maximum magnitude of the imperfection is smaller than for the calculation

shown in Fig. 10, and so the maximum strain is lower.

The location of the imperfection also plays an important role in the shear band

pattern. Figure 18 shows the shear band pattern in the upper half of the plate when an
imperfection given by Eq.17 with a = 0.2 and ro--0.10mm is placed at xo= -0.25mm,

yo--0.Omm. The shear band pattern now loses symmetry with respect to the x-plane in

order to pass through the imperfection. Similar patterns are observed when the
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imperfection is placed anywhere on the y=O.O axis. However, when an imperfection is not
placed along the centerline, no shear bands are observed in the computation for a long time

(our computations were of course limited in duration). For example, when the
imperfection of Eq.(17) was placed at x=0.1mm, y=l.0mm no shear band pattern was
triggered during the first 4.0psec. Thus, the appearance and structure of the shear band in

these dynamic problems depends on an interplay between wave focusing and the position

of the imperfection.

1.4. CONCLUSIONS

The results we have obtained show the following:

1. imperfections play an important role in the setting the external and internal

structure of shear bands in viscoplastic materials and can be said to set a length scale for
viscoplastic materials in that the dimensions of the imperfection set the initial width and

structure of the shear band;

2. little difference is found in the results obtained with different elements or

different values of the stabilization parameter as long as the mesh is sufficiently refined so
that more than five elements occur within the high gradient region of the shear band.

For coarse meshes, quadrilateral elements tend to exhibit less of a tendency to

bifurcate than cross-diagonal triangular meshes; this was also noted by Ortiz, Leroy and
Needleman(1987) and Belytschko, Fish and Englemann(1988). It has been shown here
that for meshes in which the elements are small compared to the scale of the imperfection,
mesh-dependence for the onset and early stages of localization behavior is insignificant.

The results obtained here show that quadrilaterals with different quadrature schemes and
triangular elements give similar solutions as long as the mesh is sufficiently fine to capture

the high strain gradients in the center of the band. Even for the finest meshes used here,
this condition is met only for about 3 psec, which correspond to the early stages of

localization.

However, in the uncoupled viscoplatic localization, the strain profiles develop a

cusp-shaped profile which narrows with time. When the cusp becomes narrow enough
relative to element size, the resolution is insufficient and the maximum effective strain and
the structure of the band start to depend markedly on the type of element, mesh refinement

and stabilization procedure. It should be stressed that this mesh dependence is strictly a
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consequence of lack of resolution. To obtain reasonable accuracy, the portion of the shear

band in which the strain changes most rapidly must be spanned by 4 to 7 constant strain

elements ( just as an elastic wave in a finite element mesh must be spanned by 4 to 7

elements for reasonable accuracy). Since the high gradient part of the cusp narrows with

time, any fixed mesh will eventually prove inadequate. Thus, there is no evidence of any

pathological mesh dependence in these results. If the region of highest strain gradient is

covered by only one or two elements, the well known manifestations of truncation error

appear.

The running time for the uniform 16K mesh in these explicit calculations is about

1.4psec for each element cycle on the CM200. The crossed-triangular fine mesh requires

about 7 times as much wall clock time as the quadrilateral mesh. We would expect an

increase of only a factor of 4, but evidently the increased memory requirements of crossed-

triangular meshes reduce the speed further.

The location and size of the imperfection have been shown to play a critical role in

both the internal shear band structure and the arrangement and multiplicity of shear bands.

By reducing the size of the imperfection, an interesting transition to multiple shear bands

was noted. This appears to arise from the interplay of strain concentrations caused by the

wave motion and the effect of the imperfection. Such multiple shear bands have be noted

in experiments by Anand et al. (1987). The major role of imperfections in setting the

internal morphology of shear bands has also been demonstrated in a two dimensional,

dynamic problem. In previous studies, because of computer limitations, two dimensional

meshes usually used elements of the same size as the imperfection, so the importance of the

imperfection could not be observed.
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Captions

Fig. 1.1. Description of model problem

Fig. 1.2. Stress-strain functions for examples; note strain-softening after effective plastic
strain E is about 0.1

Fig. 1.3a. Deformed mesh at 6.0 gsec with quadrilateral elements; ro = 0.1mm

Fig. 1.3b. Deformed mesh at 6.0sec with crossed-triangular elements (only quadrilaterals

are shown); ro = 0.1mm.

Fig. 1.4. Deformed mesh for 128x128 quadrilateral elements with az=0.2 at t = 4.79Lsec.

Fig. 1.5. Deformed mesh for 128x128 quadrilateral elements with a--0.2 at t = 6.00±sec.

Fig. 1.6. Deformed mesh for 128x128 quadrilateral elements with a--0.2 at t = 7.25gsec.

Fig. 1.7. Effective viscoplastic strain in the problem of Fig. 4 through 6 at t = 4.Ogsec;
128x128 quadrilateral mesh, ro = 0. 1mm.

Fig. 1.8. Effective viscoplastic strain in the problem of Fig. 4 through 6 at t = 7.2511sec;
128x128 quadrilateral mesh, ro = 0.1mm.

Fig. 1.9. Deformed mesh for 80x80 quadrilateral elements with a=0.2 at t = 4.79 Jlsec.

Fig. 1.10. Effective viscoplastic strain profiles across the shear band for quadrilaterals(top),
the 128x128 crossed-diagonal triangular element mesh (middle) andquadrilaterals with
selective-reduced integration SRI (bottom) at t=2.0, 3.0, 4.0 psec, respectively, ro =

0.1mm; all meshes are 128x128.

Fig. 1.11. Effective viscoplastic strain profiles across the shear band for quadrilateral 80x80
with stabilization parameters of 0.01 (top) and 0.05 (middle).

Fig. 1.12. Average stress versus end displacement curves for three types of elements in a
128x128 mesh: constant strain triangles, quadrilaterals with selective reduced integration
(SRI) and quadrilaterals with one-point underintegration and stabilization(URI).
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Fig. 1.13. Average stress versus end displacement curves for three meshes of one-point

quadrature elements; 6,400 elements, 10,000 elements and 16,384 elements.

Fig. 1.14. Deformed mesh for small imperfection, ro=0.0039mm, at t=7.25 psec, showing

of multiple shear bands.

Fig.1.15. Effective viscoplastic strain for small imperfection at t=7.25 gsec;

ro --O.0039mm.

Fig. 1.16. Effective viscoplastic strain across the shear band for small imperfection at

t=7.25 gisec (ro=0.00195mm) showing the development of multiple shear bands with

markedly different strain distributions than in Fig. 1.15.

Fig. 1.17. Effective viscoplastic strain profiles across the band for the imperfection Eq. (18)

at t--4.Ogsec.

Fig 1.18. Deformed mesh for upper half of specimen at t=5.Ogsec for imperfection at x=-

0.25mm, y=0.0; ro--O. rmm.
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Fig. 1.3a. Deformed mesh at 6.0 gsec with quadrilateral elements; ro = 0.1mm

Fig. 1.3b. Deformed mesh at 6.Ogsec with crossed-triangular elements (only
quadrilaterals are shown); ro = 0.1mm.
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Fig. 1.4. Deformed mesh for 128x123 quadrilateral elements with (x=0.2 at t=

4.79psec.
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Fig. 1.6. Deformed mesh for 12Sx1.2S quadrilateral elements with at=0.2 at t

7.25psec.

Fig. 1.7. Effective viscoplastic strain in the problem of Fig. 4 through 6 at t=

4.Opsec; ::3x128 quadrilateral esr,~ = 0.1mm.
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Fig. 1.10. Effective viscoplastic strain profiles across the shear band for
quadrilaterals(top), the 128x128 crossed-diagonal triangular element mesh
(middle) andquadrilaterals with selective-reduced integration SRI (bottom) at
t=2.0, 3.0, 4.0 j.sec, respectively, r. = 0.1mm; all meshes are 128x128.
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Fig. 1.14. Deformed mesh for small imperfection, r0=O0.0039mm, at t=7.25 pgsec,
showing of multiple shear bands.

Fig. 1.15. Effective viscoplastic strain for small imperfection at t=7.23 g.sec;
r0=O0.0039mm.-n
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Fig. 1.16. Effective viscoplastic strain across the shear band for small
imperfection at t=7.25 psec (r0=O.00195mm) showing the development ofmultiple shear bands with markedly different strain distributions than in
Fig. 15.

I
S/ I'

I

Fi.: Effetive.1;

Fig. 1.17. Effective viscoplastic strain profiles across the band for the
imperfection Eq.(18) at t=4.OUsec.
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Fig. 1.18. LDeformed mesh for upper half of specimen at t=5.OJ.Lsec for

imperfection at x=-o.25mm, y=0.0; ro=O.lmm.



CHAPTER 2

H-ADAPTIVE FINITE ELEMENT METHODS FOR

DYNAMIC PROBLEMS, WITH EMPHASIS ON LOCALIZATION

2.1. INTRODUCTION

The aim of this work is to develop methods for h-adaptive solutions of nonlinear

transient problems with localization behavior. Localization occurs in rate independent

materials when the momentum equations lose hyperbolicity; a regularization procedure

based on damping known as a viscoplastic model will be used here which prevents loss

of hyperbolicity. Even with regularization, the effect of a negative value of modulus is

that severe deformations occur over narrow regions in which the strains and displacement

gradients are very large; material response with negative tangent modulus are called

strain-softening in engineering. Physically localization results in bands of high strain

which are known as shear bands in the deformation of continua and as hingelines in the

deformations of shells.

In developing these methods we have focused our efforts on explicit time

integration methodologies and finite elements. Our focus on explicit time integration and

finite elements is motivated by the fact that large scale engineering problems are almost

exclusively solved by such methods; DYNA3D by Hallquist and Benson (1986) and its

descendants today are the dominant tools for nonlinear transient problems of solid

mechanics problems.

There is already a rich literature in adaptive methods for transient problems, so

only a few works will be noted. Adaptive methods for hyperbolic problems were

developed by Berger and Oliger (1984). They solved one and two dimensional transient

problems with finite difference methods and used an error criterion based on Richardson

extrapolation. Adjerid and Flaherty (1986) applied h-adaptive finite difference methods to

parabolic problems. Drew and Flaherty (1984) applied adaptive space-time elements to

one-dimensional shear banding.

In the finite element literature of solid mechanics, the application of h-adaptive

methods to transient problems has been sparse, and we know of no applications of h-
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adaptive finite element methods to transient problems with unstable material behavior, i.e.

strain softening.

There have however, been a number of interesting related works. Ortiz and

Quigley (1991) have used an r-adaptive method with an error criterion based on
interpolation, Diaz et al (1983), to solve some static localization problems. Zeng and

Wiberg (1992) developed an h-adaptive method based on constant strain triangular

elements using a modification of the Zienkiewicz-Zhu (1987) or ZZ error criterion for

linear wave problems. It has been proven by Rank and Zienkiewicz (1987) that for linear

static problems this error criterion is equivalent to the Babuska-Rheinboldt (1978)

criterion of the residual type.

One of the aims of this paper is to study various error criteria for this class of
problems. The following error criteria were selected: The Zienkiewicz-Zhu (1987) L2-

projection on stress, the Babuska-Rheinboldt (1978) residual criterion, and the

interpolation criterion Diaz et al (1983). Though the first two of these were proposed f6r

linear, elliptic problems, they appear to be reasonably effective in linear hyperbolic, one-

dimensional problems. However, in localization problems they do not fare as well. Our

studies show that the ZZ criterion, when formulated in terms of stresses is quite
ineffective for localization problems. In fact, the stress field in and adjacent to a

localization band which is triggered by strain-softening is nearly constant, so that the ZZ

criterion never initiates refinement in the area of localization. Residual type criteria are

similarly ineffective in localization.

In this paper we also propose an error criterion based on a L2 projection of the

strains. It is shown that this technique effectively captures the region where refinement,

or what we call fission of elements, is needed. Results are obtained for several
localization problems and compared to results obtained with very fine meshes. These

results show that the present procedure is capable of achieving solutions of comparable

accuracy with far fewer degrees of freedom.

The L2 projection is more easily applied in a general finite element setting than

interpolation criteria; the latter requires a knowledge of adjacent elements. It also appears

to us simpler to apply than the local evolution equation approaches pioneered by Rank

and further developed by Oden and coworkers (1989). In the latter, it is necessary to

solve the governing equations with a bubble mode added to the element and an estimate of
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the tractions at the element interface. Although these methods have proven very

successful in two dimensional meshes (and are probably equally effective in three

dimensional meshes), their application to shell structures looks formidable. It is not clear

to us, for example, how these methods would be applied to a T-section or a box beam

modeled by shell elements, whereas the L2 strain projection is readily applied as

described in Belytschko and Yeh (1992). Although general structures are not addressed in

this paper, the objective is to develop error criteria suitable for transient analysis of

nonlinear solids and continua.

An outline of the paper is as follows. In Section 2, the governing equations are

reviewed. In Section 3, the error criteria used in this study are presented along with the
new error criterion based on an L2 strain projection. The adaptive technique is covered in

Section 4. Numerical results for one dimensional and two dimensional problems are

presented in Section 5, followed by a discussion and conclusions in Section 6.

2.2. GOVERNING EQUATIONS

The problems were solved by a finite element method with a Lagrangian mesh.

The rate-of-deformation tensor

_ 1 (avi aiV
2or =Dv (1)

is used as a measure of deformation; here vi are the velocities, xi the Eulerian (spatial)

coordinates. The material is characterized as an elastic-viscoplastic von Mises solid, the

constitutive equation is expressed in terms of the Jaumann rate of the Cauchy stress

V
a = C(11- 7iP) (2)

where C is the initial elastic constitutive matrix. i1P is the viscoplastic strain rate given by

3(3)1P = 2ý (, (3)
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with the stress deviator a' =,a - i:I, where I is the identity tensor. The radius of the
3 1/2

flow potential is C - a': a') 112. Here, the rate of the effective plastic strain, t is

specified by the power law relation

C= o [&/g(8)] / (4)

where g(P) is the hardness function, m is the strain-rate hardening exponent and £o is a

reference strain rate.

The momentum equation are aijj+ bi = pvi (5a)

in rectilinear coordinates, it can be written as

D Ta + b = p;, (5b)

where b is the vector of body forces and r is the mass density.

The finite element equations are obtained by approximating the velocities in each

element by:

v(x,t) = N(x)d(t) (6)

The resulting ordinary differential equations are:

momentum equation

Ma(t) = f(t) a=2 d d(t) (7)
a2 t

fMt) = fext(t) - Ant(t) (8)

fXt = X LTfxt(t) Aint= LTf i(t)
(9)

fn t(t) - f BT(x,t)a(x,t) dM
Jn, (10)



measure of deformation

rl(x,t) = B(x)ae(t) B=DN (11)

de(t) = Led(t) (12)

In the above:

t = time;

M = mass matrix;

d = nodal displacement matrix;

f(t), fext(t), fmt(t) = resultant, external and internal nodal forces;

B(x) = semidiscrete form of the symmetric part of the gradient operator;

il = rate-of-deformation (velocity strain) tensor,

Le = Boolean connectivity matrix of element e.

2.3. ERROR MEASURES

The error is thought to be due to spatial discretization only, no attempt is done to

quantify time integration error. However, the time integration scheme used here is an

explicit central difference method which restricts the time step to a small critical value.
The error is calculated using numerical integration with three point quadrature for the one
dimensional problem and 2x2 quadrature for the two dimensional problems. We consider
four types of element error measures:

(1) Zienkiewicz-Zhu (ZZ)

e•z { f(U'h)T(U'ah)dD) Ifi]2 (13)
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This error criterion was first proposed for linear elastic problems (in the original ZZ

criterion, the elastic coefficient matrix is included to give an error in energy, but it is

omitted here to simplify application to nonlinear problems). Here f£i is the volume of

element i, 7h are the finite element solution for the stresses, and ? is the L2 projection of

the finite element stress which is given by (see Oden and Brauchli (1971), Zienkiewicz

and Zhu (1987)):

9(x)= N s (14)

where s is the array of the nodal value of the projected stress -, which is a CO function

whereas sh is a C"1 function in these elements.

S= 19-"1 fNTahdfl (15)

Ml= JNTNdfl (16)

M is similar to the mass matrix and a lumped, diagonal form of the mass matrix obtained

by Lobatto quadrature was used.

(2) Babuska-Rheinboldt (BR)

This is an error criterion developed for linear elliptic (static) problems. In applying their

concept to transient problems, we consider the residual in the equations of motion.

1

ebr=[Icl rzdf+c2 j2dF}/Qi 2 (17)

where in one dimensional problems

h2hhi
cI- c 2=--- k=-

l-v

r = a,x + b - p,
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where hi is the length of element i, n is Poisson's ratio and < > is the jump operator, i.e.

J is the inter-element traction jumps.

(3) Interpolation (IN)
This criterion was developed by Diaz et al (1983) for static problems. The form we use

here for dynamic problems is identical and in one dimension is given by:

1

e = [ is 1/hi] (18)
ki

where U,xx is obtained by using a quadratic Lagrange interpolant for constant strain

elements. In general, a Lagrange interpolant one order higher than that used for the finite

element solution is used. In one dimension

2uI 2u 2  2u 3
(xx = ?x.-x2)(x.-x3 ) + (x2 -x1 )(x2-x3 ) ' (x3 -x1 )(x3-x2 ) (19)

x1 , x2 , and x3 are the coordinates of midpoints of elements i-1, i, i+1 for an interior

element i. For an element i with a boundary on the right-hand side, the midpoints of i-2,

i-1, i are used. For an element i with a boundary on the left-hand side the midpoints of i,
i+l, i+2 are used. The displacements at xl, x2 , and x3 are denoted ul, u2 , u3.

(4) Strain-Projection (SP)
The criterion proposed here is

J= [{ feh)T(M-ch)dafl/i]2 (20)

where r is evaluated by an L2 projection which is identical to the L2 projection of-. This

measure represents the R.M.S strain error in an element and is convenient to use because
it is nondimensional. The strain projection cannot be used directly at material interfaces

because strains are generally discontinuous at such interfaces. The L2 projection must
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then be computed separately in each material subdomain; this procedure has been

described by Belytschko and Yeh (1992).

2.4. ADAPTIVE PROCEDURE

We use an h-adaptive technique, we shall refer to the refinement of an element as

'fission' and to the unrefinement of a group (family) of four elements (siblings) to their

parent element as 'fusion', see Belytschko et al (1989). These processes are illustrated in

Fig. 1a. When an element is fissioned next to an unfissioned element, slave nodes are

created. The motion of a slave node A is governed by the constraint of compatibility, i.e.

VA = T{ (21)

where T is a linear operator which enforces compatibility and V 1 and V2 are the

velocities of the master nodes. When node A is midway between nodes I and 2, T = [ I
12

1 I]. The equations of motion are not evaluated at slave node but instead the nodal'2

forces at slave nodes are added to forces at the corresponding master nodes, i.e.

{ý1I ={lf}*+ T fA (2.22)

where fA are the nodal forces at the slave node and f* are the nodal forces at nodes 1 and

2 prior to the consideration of fA. This is a standard technique for treating constraints in

explicit methods.

The adaptive process is driven by element error measures. An element is a

candidate for fission when the error is more than a specified fission-limit A i, and a

contiguous group of elemr.its originating from a single parent element is a candidate for

fusion when the error in all its siblings is lower than a specified fusion-limit efu. A

candidate is only fissioned if it complies with the 1-irregular rule (Devloo et al (1987))

and the hmin requirement, where hmin is a prescribed lower limit on the size of an

element. A candidate is fused if it complies with the 1-irregular rule only.

An important ingredient of an h-adaptive program is the data structure. In

designing a data structure, compromises must be made to conserve storage and avoid
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excessive computation time. In order to simplify the data structure we will enforce the 1-

irregular rule, i.e. neighboring elements can be at most one generation apart. The nodal

and element data for the adaptive process is handled by three arrays:

(1) NSBLNG(4,NF): the four siblings of a family (Fig. la);

(2) NABOR(8,NE): the eight neighbors of an element (Fig. Ib);

(3) MGEN(NE): the number of descendant generations for an element.

where NE and NF are the number of elements and families in the mesh. NF is initially set

to zero and increases (decreases) by one for each fissioned element (fused family).

NSBLNG is used in the fusion process in order to identify elements of a family. NABOR

is used in both fission and fusion to determine the appropriate numbering, connectivity

and status of nodes; it is also used to identify nodes lying on a boundary. MGEN is

required in order to comply with the 1-irregular rule.

In order to clarify the use of the above arrays, let us consider mesh 'a' shown in

Fig. Ic with element 5 already fissioned. Also consider mesh 'b' obtained by fissioning

element 2. The NABOR array for element 2 is given in Table 1 for both meshes. The first

thing to notice is the zero entries for L7 and L8, indicating a boundary to the left-hand

side of element 2; thus a new node needs to be created (node 20), which is a master node.

Next, LI=L2=1 indicating that element 1 extends along the entire side of element 2 and

thus a new node (node 18) needs to be created, which is a slave node. Now, L3=5 and

L4=9 thus a node already exists (node 16) which was a slave node in mesh 'a' and will

become a master node upon fission of element 2. The NSBLNG array (Table 2) gives the

four siblings for the only family in mesh 'a', so elements 5,7,8 and 9 are the only

members of the mesh whose error is checked against efu.

We will implement the repeat algorithm employed by Belytschko and Yeh (1992).

The basic idea is as follows. Start at time t--0 with an initial coarse mesh 'a' (Fig. 2) and

solve the problem using a time increment Dt for an elapsed time tl, during which the
mesh is modified at times at1 , a=l/n, n•>l; and ends up as mesh 'b'. Now, we go back to

t=0 and use mesh 'b' to solve the problem and record the results. So the first run over the

time interval serves the purpose of finding a suitable mesh while the second run is used to

actually solve the problem at hand. This procedure is repeated over every 'ime interval tl

as illustrated in Fig. 2 thus using mesh 'c' to go from t=tl to t=2tl; and so )n until the

end time t2 is reached.
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Although the above description was limited to a four-node quadrilateral, it is also

applied to the two node element for the one dimensional problems solved here. Fig. la

shows the fission-fusion process for one element, in this case there is no need for slave
nodes, i.e. all nodes are masters. Fig. lb shows Ll and L2 the two neighbors of element
JE. The same three arrays: NSBLNG, NABOR, MGEN are used, however the size of

NSBLNG reduces to 2xNF and that of NABOR to 2xNE.

2.5. NUMERICAL EXAMPLES

Stability considerations

The explicit integration schemes for the semi-discrete equations of motion (Eqn.

7) and the plastic strain rate (Eqn. 4) are conditionally stable. In addition since h-
adaptivity introduces much smaller elements, subcycling in which different time steps are
used in different elements was used to achieve computational efficiency, see Belytschko

and Liu (1982) and Belytschko and Lu (1992).

One dimensional bar

Consider a bar of length L=100 in, cross-sectional area A=1.0 in2 , elastic
modulus E=3xl0 7 lbf/in2, density r=0.00074 lb/in2. The element mass matrix is M = 1 (

Mdiag + Mcons) where Mdiag is the diagonal, lumped mass and Mcons is the consistent

mass. It is well known that this combination provides the best spectral fidelity for the

mesh.

The material is rate-dependent with an effective plastic strain rate represented by

the power law relation given by Eqn. 4. The evolution equation (Needleman 1988) for

g(P) takes the form g = H Igl, where H = H1 for P < Pim, H = H2 for 9 > Pm and g(0) =

OW At each time increment the stress state is updated using the forward Euler scheme.

Fig. 3 shows computed stress-strain curves (A, B, and C) at various imposed strain rates

for c0o= 0.002E, m--0.02, Eo--0.002, H1 =25 0o, H2 =2.5%o and em=0.2Oo/E. As

apparent from these curves the material hardens with increasing strain, but because of

strain-rate dependence softening might still occur.

The bar is subjected to a constant velocity vo=300 in/s at both ends resulting in

two step waves of constant strain traveling toward each other. The magnitude of the

38



velocity is chosen so that the material remains elastic until the waves meet at the middle of

the bar, doubling the strain value at that point and driving the material well into the plastic
range. At first thought, no localization is expected since the material is hardening under
constant strain rates, but a closer look at the actual stress-strain response (Curve D, Fig.
3) for the midpoint under this particular loading shows a softening behavior which is due
to the step strain wave. Solving this example using a fixed mesh with 80 elements,
At=2.5xl0-7, and t2/At=1800 results in a localized strain profile B in Fig. 4a and a stress

profile as shown in Fig. 4b. We will use these results as a benchmark for the adaptive
results. These profiles are plotted for t=0.9to, where to is the time required for an elastic
wave to traverse the entire length of the bar, to=LI-•/-r.

It is important, however, to keep in mind that in problems involving localization
due to material softening, the late stages of the solution depend on the element size
employed in the analysis. A simple remedy for this is to restrict the minimum size of
elements used to a minimum allowable size; we used hmin=L180 for all runs. This is

appropriate here, since our goal is to illustrate adaptivity and not to propose a constitutive
law that overcomes this dependence on mesh size which occurs in the late stages of
localization even with viscoplasticity.

In the results for the fixed mesh all four estimates indicate high error at the wave
fronts before the two waves meet (t<0.5to). However, after the waves meet, Fig. 5, only

the SP and IN indicate high errors at wave fronts and localization regions, while the ZZ

and BR indicate high errors at wave fronts only, thus missing the localization. Although
the above error profiles are shown for t=0.9to, they are representative of profiles for
t>0.5to. The SP and IN estimates are normalized with respect to eo = ao(/E, while the ZZ

and BR are normalized with respect to so. The normalized SP estimates the error at wave

fronts to be around 0.05 (Fig. 5a) which is the same as the estimate given by the
normalized ZZ (Fig. 5c), this is expected because in this region the behavior is elastic and
the two estimates are identical. The normalized ZZ and BR profiles (Fig. 5c,d) are very

close, which is expected in linear static problems and seems to carry over to dynamics in
this specific example.

This one dimensional example was also solved using an adaptive mesh guided by
ZZ (ef---0.02a6r and efu--0.5ef) and SP (e--0.02co and e U= 0.5e 1 ) with At=2.5x10-7 ,

tl/Dt=100, t2/At=1800, a--0.2, and hmin= L80. The evolution of the adaptive meshes
with time are shown in Fig. 6. The meshes are similar until localization occurs (t=0 .5to),
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the ZZ driven mesh (Fig. 6a) does not refine the mesh to accommodate the localization

while the SP does (Fig. 6b). Thus the strain profiles after localization are not the same,

with the SP driven one being closer to the fixed mesh (Fig. 4a). Results obtained by

using IN are similar to that of SP, while results obtained by using BR are similar to that

of ZZ.

Compression of a rectangular block

Consider the problem of plane strain compression analyzed by Needleman (1989)

for dynamic shear band development. The main difference between Needleman's analysis

and ours lies in the type of discretization; we use four-node quadrilaterals with one point

integration and hour-glass control (Flanagan and Belytschko (1981)), Needleman used

crossed triangular quadrilaterals. We use one point integration and perturbation hourglass

control (with a viscosity factor of 0.01) in order to be able to represent incompressible

deformation without mesh locking and for speed of calculation.

The uniaxial response for the effective plastic strain rate is represented by a power

law rate relation (Eqn. 4) with a hardness function

(1 + C/C0 )N
g(P) = CO + (9/e,)2 (23)

An initial imperfection is included in the form of a reduction in the yield strength

Co = do(I-'e'r2/r) r2 = x2 + y2  (24)

The material properties used are as follows: Young's Modulus E=211GPa, Poisson's
ratio v=0.3, mass density p = 7800 kg/m 3 , y=0.2, ro --0.1mm, do=460MPa,

Co=0.00218, N=0.1, m--0.01 and o-0--0.002 s-1.

We analyze one fourth of the block (hoxho) shown in Fig. 7 by making use of

symmetry. The prescribed velocity v(t) is equal to vot/to for t:to and vo for t>to with
to=O. 1x10-6 . The end displacement and the corresponding average stress are given by:

t. ho

u - v(t) dt and Cavg 1 j ty(x,ho) dx (25)
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where ty is the traction in the y-direction and h is the current width at y=ho. At each time

increment, the stress state is updated using the rate tangent method of Peirce et al. (1984)

with the integration parameter q= 1.0.

Case 1
As a first step, we used a fixed mesh of 20x20 elements with two forms of the

hardness function g(P): (a) hardening with E I=10 4 o and (b) softening with r,1 =10 2 eo .

Fig. 8 shows average stress versus end displacement, with an imposed velocity vo=10

m/s, At=2.0xl0"9 , t2/At=6000 for the two materials (Curves A,C). The response for

both materials is initially identical; however, for the softening material there is an abrupt

stress drop with increased loading that is associated with shear band formation. For the
softening solid a region of high effective strain, E, starts developing at -u/ho--0.06 and

acquires the shape shown in Fig. 9a for the last calculated point, -u/ho=0. 12. A definite

band with high strains forms at 450 to the compression axis. The strains inside the band

increase significantly with continued loading, while regions outside this band experience

little change in strain. This is not the case for the hardening solid, where strains increase

uniformly throughout the solid with increased loading (Fig. 9b). However, only a small

region of higher strains develops near the inhomogeneity.

Fig.. 10 shows the surfaces of the SP error corresponding to the surfaces of

effective strains shown in Fig. 9. For the softening solid, the error is high in the entire

shear band region (Fig. 10a). For the hardening solid, the SP error is large only at the

inhomogeneity location (Fig. 10b). These results are desirable and will lead to a useful

mesh: refinement occurs near the inhomogeneity for hardening, and within the whole

shear band for softening.

Starting with an initial mesh of 20x20 elements, and using the SP error measure
to guide adaptivity with efi= 0.01, efu= 0, Dt=l.0x10-9 , tl/At=800, t2/At=8000, and

a0--.5 the softening solid was solved. The response curve D is shown in Fig. 8. Labels 1

to 6 are used to show the evolution of the mesh with increased loading. Each segment of

the curve between labels represents a different mesh. For the first segment (0-1) no

refinement is needed, for segment 1-2 only few element at the lower left comer of the

mesh are fissioned. For segment 2-3 the refinement is minimal and is limited to a region

near the imperfection (Fig. 1 la). However, for segments 3-4, 4-5, and 5-6 which involve



localization, the entire shear band region is refined to give the meshes in Fig. I lb, c, d
respectively. In this analysis we use hmin=ho/8 0, which allows for only two levels of

fission.

Curves B, C and D (Fig. 8) are for the same problem, the only difference being in

the size of the smallest elements in the shear band. Although the curves are identical up to
about -u/ho=0.05, the response becomes noticeably different as the loading progresses.

In order to compare the responses obtained for -u/ho>0.05 we consider: (1) the onset of

localization to be deftied as the point on the curve after which the first abrupt drop in

stress occurs, and (2) the magnitude of this drop to be a gauge for the severity of the

localization. Curve D predicts an earlier onset of localization with high severity followed

by high oscillations, while Curve B predicts a late onset with low severity followed by
low oscillations. Curve C is middle grounds between B and D.

Case 2
The imperfection of case 1 is eliminated, i.e. y=0 in Eqn. 24. Using a fixed mesh

of 20x20 elements with vo=10 m/s, At=2.Oxl0- 9 , t2/At=6000, and solving the case of a
softening solid (E1=10 2 eo), we obtain curve A in Fig. 12. Although there is no

imperfection in this case, a region of high effective strain starts developing at -u/ho=0. 10

and acquires the shape shown in Fig. 13a for the last calculated point, -u/ho--O.12. The

mode of localization is quite different than that of case 1 (Fig. 9a) and occurs at a later
stage of loading: -u/ho=0.10 as compared to 0.06 for case 1. Thus, in this problem, an

imperfection is not needed to achieve localization and the pattern of shear bands is quite

different than with an imperfection. The plot for the SP error at -u/ho--0. 12 (Fig. 13b)

indicates high error in the localized region. This will lead to refinement within the whole

shear band.

The problem was also solved starting with an initial mesh of 20x20 elements, and
using the SP error measure to guide the adaptivity with efi = 0.02, efu= 0, At=l.Oxl0-9 ,

tl/At=12000, t2=tl, a=1/15, and hmin= ho/80. The response curve B is shown in Fig.

12 and the corresponding adaptive mesh is shown in Fig. 14.

Curves A and B in Fig. 12 are the response curves for the same problem, the only
difference being in the size of the smallest elements in the shear band. The curves are
identical up to the onset of localization after which Curve B shows a steeper stress drop

followed by higher oscillations; this result is similar to case 1.

42-2



Case 3
In this case we consider a softening solid with e 1=200eo and impose a velocity

vo=30 mn/s. This case is identical to the one analyzed by Belytschko et al (1992) using a

fine mesh with 128x128 elements. We start with an initial coarse mesh (16x16 elements)
and use the SP error measure to guide the adaptivity. Fig. 15b shows the curve of the
average stress versus end displacement corresponding to the adaptive mesh shown in Fig.
15a. This curve is in good agreement with the one for the fine mesh (128x128)
represented by discrete points in Fig. 15b. The adaptive mesh suggests the existence of a
shear band. This can be verified by plotting the profile of the effective strains across the
band along the normal direction at -u/ho=O.12 (Fig. 15c). This profile is also in good

agreement with the results for the fine mesh.

2.6. CONCLUSIONS

The following error estimates have been studied in one-dimensional localization
problems: the Zienkiewicz-Zhu global L2 stress, Babushka-Rheinboldt residual criterion,

the interpolation criterion of Diaz et al (1983), and the strain-projection. The last is a new
error criterion proposed herein which is based on an L2 projection of strains.

It was shown that error indicators such as the momentum equation residual
(developed by Babushka & Rheinboldt (1978) for linear elastic statics) and the L2
projection on stresses (developed by Zienkiewicz & Zhu (1987) for linear elastic statics)
are not effective for localization problems. They fail to indicate the need for refinement in
the area of localization, where the strain gradients are very large but the stress is nearly
uniform.

An interesting finding from the adaptive two dimensional calculations is that in the
dynamic problem, imperfections interact with the amplification due to wave propagation
effects to set the shear band pattern. In static problems with homogeneous stress fields,
the imperfection is critical in setting the localization and the length scale (i.e. the internal
structure) of the shear band. Thus if a large imperfection is placed at the center, a pattern
of shear bands, with one passing through the middle develops. Otherwise, a different
pattern of shear bands develops.

It is also of interest to note that while nonuniform meshes in wave propagation
problems lead to additional errors due to spurious reflection at interfaces between regions
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with different element sizes (Holmes and Belytschko (1976)), in adaptive methods,
varying element sizes do not detract from accuracy. The reason for this is evidently the
tendency of the fine mesh to move with the wave front, so that the wave front does not
pass through regions of different element sizes. In fact, the coarser elements away from
the wave front are beneficial because they filter out spurious high frequency components.

The results obtained here make us quite optimistic about the potential of h-
adaptivity in explicit, transient finite element programs. The implementation of h-
adaptivity in this class of programs is not difficult, since slave nodes which arise at mesh
gradations are easily handled in an explicit setting. Furthermore, the overhead associated
with adaptivity is not large, and a more accurate solution can be obtained with the same
computational resources. The regions of localization cannot be known prior to a run, and
the use of a uniform mesh with the refinement necessary to resolve shear bands accurately

requires excessive computational resources. For general purpose programs, the addition

of h-adaptivity is more difficult, but nevertheless the advantages are promising.



REFERENCES

Adjerid S. and Flaherty J.E. (1986), "A moving-mesh finite element with method with

local refinement for parabolic partial differential equations." Computer Methods in

Applied Mechanics and Engineering, 55, 3-26.

Babushka I. and Rheinboldt (1978), "Error estimates for adaptive finite element

computations." SIAM Journal of Numerical Analysis, 15,736-754.

Belytschko T., Chiang H.Y., and Plaskacz E. (1992), "High resolution two dimensional

shear band computations: imperfections and mesh dependence." Computer Methods in

Applied Mechanics and Engineering (to appear).

Belytschko, T. and Liu W.K. (1982), "Time integration with explicit/explicit partitions

EPIC-2." Report to Ballistics Research Laboratory.

Belytschko, T. and Lu Y.Y. (1992), "Convergence and stability analyses of multi-time

step algorithm for parabolic systems." Computer Methods in Applied Mechanics and

Engineering (to appear).

Belytschko T., Wong B.L., and Plaskacz, E.J. (1989), "Fission-Fusion adaptivity in

finite elements for nonlinear dynamics of shells." Computers and Structures, 33, 1307-

1323.

Belytschko T. and Yeh I.S. (1992),"The splitting pinball method for contact-impact

problems." Computer Methods in Applied Mechanics and Engineering (to appear).

Berger M. and Oliger J. (1984), "Adaptive mesh refinement for hyperbolic partial

differential equations." Journal of Computational Physics, 53, 484-512.

Devloo P., Oden J.T., and Stroubelis (1987), "Implementation of an adaptive refinement

technique for the SUPG algorithm." Computer Methods in Applied Mechanics and

Engineering, 61, 339-358.

Diaz A.R., Kikuchi P., and Taylor J.E. (1983), "Design of an optimal grid for finite

element methods." Journal of Structural Mechanics, 11( 2).

115



Drew D.A. and Flaherty J.E (1984), "Adaptive finite element methods and the numerical

solution of shear band problems."

Flanagan D. and Belytschko T. (1981), "A uniform strain hexahedron and quadrilateral

with orthogonal hourglass control." International Journal for Numerical Methods in

Engineering, 17, 679-706.

Hallquist J.0. and Benson D.J. (1986), "Nonlinear dynamics analysis of structures in

three dimensions." DYNA3D user's manual, Report UCID-19592, University of

California, Lawrence Livermore National Laboratory, Livermore, CA.

Holmes N. and Belytschko T. (1976), "Postprocessing of finite element transient

response calculations by digital filters." Computer & Structures, 6, 211-216.

Needleman A. (1988), "Material rate dependence and mesh sensitivity in localization

problems." Computer Methods in Applied Mechanics and Engineering, 67, 69-85.

Needleman A. (1989), "Dynamic shear band development in plane strain." Journal of

Applied Mechanics, 56, 1-9.

Oden J.T. and Brauchli (1971), "On the calculation of consistent stress distributions in

finite element applications." International Journal for Numerical Methods in Engineering,

3, 317-325.

Oden, J.T., Demkowicz, L., Rachowicz, W., and Westermann, T.A. (1989), "Toward a

universal h-p adaptive finite element strategy, part 2. A posteriori error estimation."

Computer Methods in Applied Mechanics and Engineering, 77, 113-180.

Ortiz, M. and Quigley, J. (1991), "Adaptive mesh refinement in strain localization

problems." Computer Methods in Applied Mechanics and Engineering, 90, 781-804.

Peirce D., Shih C.F., and Needleman A. (1984), "A tangent modulus method for rate

dependent solids." Computers and Structures, 18, 875-887.

4(v



Rank E. and Zienkiewicz (1987), "A simple error estimator in the finite element method."
Communications in applied numerical methods, 3, 243-249.

Zeng L.F. and Wiberg N.-E. (1992), "Error estimation and adaptivity of spatial
discretization in semidiscrete finite element analysis for dynamic problems."

Computational Mechanics.

Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive
procedure for practical engineering analysis." International Journal for Numerical
Methods in Engineering, 24, 337-357.



JE NABOR MGEN

I L2 L3 L4 L5 L6 L7 L8
Mesh 2 1 15 9 3 3 0 0 0
Meshb 1 10 10 12 12 0 0 1

Table 1

NSBLNG Mesh a Mesh b

M1 5 5 2

M2 7 7 10
M3 8 8 11

M4 9 9 12

Table 2



Captions

Fig. 2. 1. (a) Fission-fusion cycle for a four-node quadrilateral and a two-node bar, (b)

neighbor configuration for a four-node quadrilateral and a two-node bar, (c) transition

from mesh a to mesh b by fission of element 2.

Fig. 2.2. Repeat algorithm for an initial mesh with four elements.

Fig. 2.3. Stress-strain response at various constant strain rates (A,B,C) and a variable

strain rate (D).

Fig. 2.4. Comparison of (a) strain and (b) stress profiles for a fixed 80 element mesh

(80), with adaptive solutions using Zienkiewicz-Zhu error criterion (ZZ) and strain-

projection error criterion (SP).

Fig. 2.5. Error profiles for one dimensional localization problem using: (a) strain

projection (SP), (b) interpolation (IN), (c) Zienkiewicz-Zhu (ZZ), and (d) Babushka-

Rheinboldt (BR).

Fig. 2.6. Evolution of mesh with time guided by (a) Zienkiewicz-Zhu and (b) strain

projection error measures.

Fig. 2.7. Block subjected to compression.

Fig. 2.8. Average stress versus end displacement curves for the block using a hardening

material (Curve A) and a softening material (Curves B, C,D).

Fig. 2.9. Effective strain surfaces at -u/ho--0.12 corresponding to (a) Curve C and (b)

Curve A in Fig. 2.8.

Fig. 2.10. Strain projection error surfaces at -u/ho=0.12 corresponding to (a) Curve C

and (b) Curve A in Fig. 2.8.

Fig. 2.11. Adaptive mesh evolution corresponding to Curve D in Fig. 2.8.



Fig. 2.12. Average stress versus end displacement curves for a softening material with no

imperfection.

Fig. 2.13. (a) Effective strain and (b) Strain projection error surfaces corresponding to
Curve A (Fig. 2.12) at -u/ho--0.12.

Fig. 2.14. Adaptive mesh corresponding to Curve B (Fig. 2.12.).

Fig. 2.15 (a). adaptive mesh, (b). Average stress versus end displacement curve for a

softening solid and (c). Effective strain across the shear band along the normal direction.
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Fig. 2.1. (a) Fission-fusion cycle for a four-node quadrilateral and a two-node bar
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(b) neighbor configuration for a four-node quadrilateral and a two-node bar
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Fig. 2.2. Repeat algorithm ior an initial mesh with four elements.
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Fig. 2.3. Stress-strain response at various constant strain rates (A,B,C) and a variable strain rate (D).
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